| Titel: | Neuerungen auf dem Gebiete der Schwachstromtechnik. | 
| Autor: | Karl T. Fischer | 
| Fundstelle: | Band 317, Jahrgang 1902, S. 69 | 
| Download: | XML | 
                     
                        Neuerungen auf dem Gebiete der Schwachstromtechnik.
                        Von Dr. Karl T. Fischer, Privatdozent an der kgl. Technischen Hochschule in München.
                        (Fortsetzung von Bd. 316 S. 773.)
                        Neuerungen auf dem Gebiete der Schwachstromtechnik.
                        
                     
                        
                           III. Das Pupin'scheM. J. Pupin ist Professor der Mechanik an der
                                    											Columbia-Universität in New York; vgl. Transactions
                                       												A. J. E. E., vol. XVI, p. 93, 1899, und Western Electrician, 23. Februar 1901. Kabel für Ferntelephonie und -telegraphie.
                           1. Um die Leitungen der Telephonnetze zu verbessern, ist nicht mehr so häufig wie
                              									früher die Zuleitung durch eine auf Masten geführte Luftleitung und die Rückleitung
                              									durch die Erde besorgt, sondern man hat Zu- und Rückleitung nahe bei einander oder
                              									so, dass sie sich kreuzen – Schleifenleitungen –, auf den Masten angebracht oder
                              									beide in einem in die Erde verlegten Kabel vereinigt; der Vorteil, den man durch
                              									letztere Massregel erzielte, besteht darin, dass bei Luft-Erdleitungen infolge der
                              									Induktion von anderen Telephonleitungen oder von Trambahnströmen u.s.w. her
                              									Nebeneinflüsse sich stark störend bemerkbar machen, während dann, wenn Hin- und
                              									Rückleitung nahe bei einander liegen, die Fremdinduktionen in der Hin- und
                              									Rückleitung sich gegenseitig in ihrer Wirkung aufheben; der Nachteil, den die Kabel
                              									mit sich bringen, ist die hohe Kapazität, die sie gegenüber den Luftleitungen haben;
                              									will man durch einen Leiter von grosser Kapazität einen Stromimpuls übertragen, so
                              									muss erst eine bestimmte Elektrizitätsmenge auf den Leiter gebracht werden, damit er
                              									selbst genügend geladen wird, uni an seinem Ende die nötige Spannung aufzuweisen;
                              									die Zeit und die Menge der dazu nötigen Ladung ist um so grösser, je grösser die
                              									Kapazität des Kabels ist; es wird daher in längeren Kabeln erstens die Raschheit der
                              									Uebertragung von Stromimpulsen sehr herabgemindert, so dass z.B. durch ein
                              									transatlantisches Kabel nicht mehr als fünf Stromimpulse in der Sekunde übertragen
                              									werden können; zweitens werden aber auch rasch aufeinander folgende Impulse nicht
                              									mehr rein übertragen, indem die den einzelnen Impulsen entsprechenden, sehr langen
                              
                              									elektrischen Wellen ineinander übergreifen und sich sowohl nach Amplitude als Phase
                              									verändern, je nachdem sie eine verschieden grosse Periode haben. Ein telephonisches
                              									Gespräch ist daher um so schwieriger übertragbar, je länger das Kabel ist. Es ist
                              									nun zwar schon vor 50 Jahren von Sir W. Thomson (jetzt
                              										Lord Kelvin) darauf aufmerksam gemacht worden, dass
                              									die Wirkung der Kapazität eines Leiters durch Einschaltung von
                              										„Selbstinduktionen“, d.h. Leiterstücken, welche, wie z.B. eine Spule mit
                              									vielen Windungen, eine starke magnetische Wirkung ausüben, geschwächt werden kann;
                              									es scheint aber erst Pupin den einfachsten Weg zur
                              									Konstruktion eines durch eingeschaltete Selbstinduktionen verbesserten Kabels
                              									gefunden und praktisch erprobt zu haben.
                           2. Angenommen, es sei am Anfang des Kabels eine Spannung angelegt, die sich nach dem
                              									Sinusgesetz verändert und etwa 600mal pro Sekunde einen bestimmten Wert erreicht,
                              									d.h. die Schwingungszahl 600 pro Sekunde besitzt; während die Spannung am
                              									Anfangspunkte vom Werte Null bis auf den Maximalwert gestiegen, auf den
                              									Minimalwert gefallen und wieder zum Nullwert zurückgekehrt ist, wird auf dem
                              									Kabel die elektrische Störung um eine bestimmte Strecke weit sich fortgepflanzt
                              									haben, etwa 18 km; diese Strecke würde dann die Wellenlänge der betreffenden
                              										„elektrischen Schwingung“ in dem Kabel heissen; die
                              									Fortpflanzungsgeschwindigkeit der elektrischen Schwingung wäre in diesem Fall 600 .
                              
                              									18 km= 10800 km pro Sekunde; es ist diese Zahl immer kleiner als die
                              									Fortpflanzungsgeschwindigkeit, welche Licht- oder elektrische Wellen im freien Raum haben, wo sie bekanntlich 300000 km
                              									beträgt. Die Fortpflanzungsgeschwindigkeiten, welche in Kabeln auftreten, können
                              									irgend einen Wert haben, der kleiner ist als die genannte Lichtgeschwindigkeit, und
                              									der bis zu wenigen Centimetern herabsinken kann; massgebend ist dafür der
                              									Widerstand, die Selbstinduktion und die Kapazität des Kabels. Je kleiner die
                              									Fortpflanzungsgeschwindigkeit ist, um so kleiner ist natürlich bei gegebener
                              									Schwingungszahl auch die Wellenlänge. Ausser der Fortpflanzungsgeschwindigkeit
                              									ändert sich im Kabel auch die Stärke der Uebertragung mit der Entfernung, d.h. die
                              									Amplitude, welche die Stromstärke an einem entfernteren Punkte des Kabels noch
                              									zeigt. Ist dieselbe am Anfang des Kabels = A0, so ist sie in der Entfernung x vom Anfangspunkte, wie die mathematische Analyse
                              										zeigtVgl. z.B. Bedell und Crehore, Theorie der
                                       												Wechselströme, Berlin 1895, S. 194 ff.,
                           Ax = A0 . e– βx . . . . . . 1)
                           wo β
                              									„Dämpfungs- oder Abnahmekoeffizient“ der Amplitude genannt werden kann, β berechnet sich zu
                           \beta=\sqrt{\frac{1}{2}\,p\,\cdot\,C\,[\sqrt{p^2\,L^2+R^2}-p\,L]} . . . 2)
                           wenn p=\frac{2\,\pi}{T}=2\,pi\,z_1,
                           
                              
                                 T =
                                 Dauer einer Schwingung,
                                 
                                 
                              
                                 z =
                                 Schwingungszahl pro Sekunde,
                                 
                                 
                              
                                 
                                    C =
                                    
                                    R =
                                    
                                    L =
                                    
                                 KapazitätOhm'schen WiderstandSelbstinduktion
                                 der Längeneinheitdes Kabels
                                 
                              
                           bedeuten.
                           Die Phasendifferenz, welche beim Vorwärtsschreiten der elektrischen Welle über die
                              									Strecke x sich ausgebildet hat – Zurückbleiben der
                              
                              									Wellenbewegung gegenüber der Bewegung im Anfangspunkt –, ist
                           \alpha\,\cdot\,x=x\,\cdot\,\sqrt{\frac{1}{2}\,p\,\cdot\,C\,[\sqrt{p^2\,L^2+R^2}+p\,L]} . . . 3)
                           Wirkt daher im Anfangspunkte des Kabels eine elektromotorische
                              									Kraft, welche sich nach dem Sinusgesetz ändert, so ergeben sich in einem bestimmten
                              									Zeitmoment t Momentan-Stromstärken i an den verschiedenen Punkten des Kabels, die sich aus
                              									der Formel berechnen lassen:
                           i = A0 . e– βx . sin (p . t ± αx) . . . . . 4)
                           
                           Die Fig. 1 stellt eine solche Stromverteilung,
                              									die in einem bestimmten Moment t längs des Kabels
                              									herrscht, dar. Der Abstand zweier Punkte MN, in welchem
                              									die Stromstärken gleiche Phase haben, z.B. den Maximalwert, ist die Wellenlänge; wie
                              									die Gleichung 4) unmittelbar erkennen lässt, wird der Sinus immer dann seinen früheren Wert annehmen, wenn
                           
                              αx = 2π
                              
                           geworden ist. Verfolgen wir daher am Kabel entlang die
                              									Stromphasen in einem bestimmten Moment, so kommen wir immer zur selben Phase, wenn
                              
                              									wir in Richtung der x um ein Stück
                           x=\frac{2\,\pi}{\alpha}=\lambda . . . . . . 5)
                           weiter gegangen sind. Diese Entfernung ist also gleich der
                              									Wellenlänge λ der betreffenden Schwingung und
                           \lambda \,z=\frac{2\,\pi}{\alpha}\,\cdot\,z=V . . . . . . 6)
                           ist demnach die Fortpflanzungsgeschwindigkeit derselben.
                           
                              
                              Textabbildung Bd. 317, S. 70
                              Fig. 1.
                              
                           Diese Formeln bestimmen quantitativ, wie stark die Verzerrung der übertragenen
                              									Stromimpulse, welche im Mikrophon hervorgerufen werden, durch die Schwingungszahl
                              									derselben, d.h. die Tonhöhe beeinflusst wird. Namentlich zeigt Formel 2), dass
                              									raschere Schwingungen, für die p einen hohen Wert hat,
                              									schwächer in die Ferne übertragen werden als langsamere, und gibt genau an, wie die
                              									Schwächungen von den Grössen C, L und R abhängen, wenn das Kabel gleichförmig ist; man sieht
                              									aus ihr, dass eine Erhöhung der Selbstinduktion β
                              									kleiner macht. Lässt man L sehr gross werden und den
                              										Ohm'schen Widerstand R
                              									sehr klein gegenüber L,
                              									so lässt sich β auf einen sehr einfachen Ausdruck
                              
                              									bringen. Schreibt man nämlich Formel 2) in der Form
                           \beta=\sqrt{\frac{1}{2}\,p\,\cdot\,C\,[p\,L\,\sqrt{1+\frac{R^2}{p^2\,L^2}}-p\,L]} 2a)
                           und bedenkt man, dass
                           
                              \sqrt{1+\frac{R^2}{p^2\,L^2}}=1+\frac{1}{2}\,\frac{R^2}{p^2\,L^2}
                              
                           gesetzt werden kann, wenn \frac{R^2}{p^2\,L^2} klein ist, so wird
                           \beta=\frac{R}{2}\,\sqrt{\frac{C}{L}} . . . . . . 7)
                           d.h. wenn die Selbstinduktion der Leitung sehr gross ist
                              									gegenüber dem Ohm'schen Widerstand, so hängt die
                              									Schwächung der Amplitude der einzelnen Schwingungen nicht mehr von der
                              									Schwingungszahl ab, und es werden dann die einzelnen Schwingungen – beim Telephon
                              									die einzelnen Töne – gleich stark geschwächt; ausserdem ist die Schwächung überhaupt
                              									viel kleiner, wenn L gross ist, als wenn L nicht vorhanden oder klein ist.
                           3. Um die Selbstinduktion einer Leitung zu erhöhen, ohne sie inhomogen zu machen,
                              									wurde vorgeschlagen, sogen. Compounddraht, der aus einer Stahlseele mit Kupferhülle
                              									besteht, zu verwenden. Einfacher wäre eine Erhöhung der Selbstinduktion zu
                              									erreichen, wenn man nur an einzelnen Stellen der Leitung, etwa in periodischen
                              
                              									Abständen, Rollen mit hoher Selbstinduktion anbringt; doch müssen sie geeignete
                              
                              									Grösse und aus theoretischen Ueberlegungen zu ermittelnde Abstände voneinander
                              									haben; sonst erhöhen sie entweder den Widerstand der Leitung zu sehr, oder sie geben
                              									zu störender Reflexion der elektrischen Wellen Anlass. Versuche, welche in dieser
                              									Richtung auf Vorschlag von O. HeavisideVgl. O. Heaviside, Electromagnetic Theorie,
                                       												vol. I. p. 435. angestellt wurden, schlugen in der That
                              									fehl, weil sie nicht auf der sicheren Grundlage der Rechnung standen, die hier
                              									unbedingt erforderlich ist. Prof. Pupin hat eine genaue
                              									mathematische Analyse von solchen Kabelleitungen, in welche in periodischen
                              
                              									Intervallen Rollen von bestimmter Selbstinduktion eingeschaltet sind, gegeben und
                              
                              									die rechnerischen Ergebnisse experimentell nachgeprüft; nach dem grossen Aufsehen,
                              									welches Pupin in Amerika erregt hat, und nach den
                              									enormen Geldmitteln, welche ihm für die Ueberlassung seines Kabels zur Verfügung
                              									gestellt wurden, zu schliessen, hat Pupin sein neues
                              									System bereits zu grosser Vollkommenheit gebracht.
                           Er geht von dem Fall aus, dass an eine horizontal liegende Stimmgabel eine
                              									horizontale dünne undehnbare Schnur angeknüpft wird; bewegt sich die Schnur in einem
                              									widerstehenden Mittel, so wird die Amplitude der Schwingungen sehr rasch kleiner,
                              
                              									während diese, von der Stimmgabel erregt, die Schnur entlang sich verbreiten. Je
                              									dicker die Schnur, also je träger sie ist, um so geringer wird die Schwächung der
                              									Amplitude während der Ausbreitung. Verteilt man daher auf einer dünnen Schnur eine
                              									Reihe von Belastungen – Klebwachsstücken –, so werden die Schwingungen kräftiger
                              									übertragen als ohne die Belastungen; es ist jedoch nötig, dass diese Belastungen
                              									geeignete Abstände haben; so lange die Belastungen sehr gross sind, aber in grossen
                              									Abständen angebracht werden, treten an ihnen starke Reflexionen ein, und man sieht
                              									sofort aus dem Versuch, dass die Belastungsstücke mindestens in einem Abstand
                              									angebracht sein müssen, der kleiner ist als die halbe Wellenlänge der zu
                              									übertragenden Schwingung. Also eine grosse Belastung, auf mehrere Punkte verteilt,
                              									ist günstiger als dieselbe an einer einzigen Stelle konzentriert angebracht.
                           In der rechnerischen Behandlung des Vorganges spielen die Massen dieser Belastungen
                              									dieselbe Rolle, wie die Selbstinduktionen bei Uebertragung elektrischer Wellen durch
                              									ein Kabel. Die Wellenlänge wird natürlich durch Einführung von solchen Belastungen
                              									geändert.
                           Um eine sichere Basis für die Rechnung zu gewinnen, handelt es sich zunächst darum,
                              									zu ermitteln, wie nahe bei einander die Selbstinduktionen angebracht werden müssen,
                              									damit ein Kabel mit diskret angeordneten Selbstinduktionen in der Berechnung wie ein
                              									gleichförmiges Kabel behandelt werden darf. Nennt man ein Kabel mit verteilter
                              									Selbstinduktion um so mehr gleichförmig, je genauer ein Kabel mit derselben
                              									Gesamtselbstinduktion bei vollkommen gleichförmiger Verteilung dieselbe Wellenlänge
                              										λ und denselben Dämpfungskoeffizienten β besitzt, so ergibt sich aus Pupin's Berechnungen, dass die Selbstinduktionsrollen in nicht zu grossen
                              									Abständen angebracht werden dürfen, und dass die grössten zulässigen Abstände in
                              									einer einfachen Beziehung zur Wellenlänge der übertragenen Wellen stehen müssen. Es
                              									ist ein ungleichförmiges Kabel mit derselben Genauigkeit wie ein gleichförmiges
                              									berechenbar, mit welcher
                           sin\,\frac{1}{2}\,\frac{2\,\pi\,l}{\lambda}=\frac{1}{2}\,\frac{2\,\pi\,\cdot\,l}{\lambda} . . . . 8).
                           gesetzt werden darf, wo l den
                              									Abstand zweier Selbstinduktionsrollen bedeutet. Je kleiner also die Wellenlänge ist,
                              									in um so kleineren Abständen müssen die eingeschalteten Selbstinduktionen angebracht
                              									sein. Ist dies geschehen, so wird also das Kabel mit verteilter Selbstinduktion dieselben Vorteile bieten, wie ein gleichförmiges mit gleicher Selbstinduktion, also
                              									weniger schwächen und weniger verzerren. An einem Beispiel sei dies dargethan:
                           Angenommen, es werde ein telephonisches Gespräch auf 400 km übertragen und zwar durch
                              									ein Telephonkabel, wie es von der New
                                 										York-Telephongesellschaft für Entfernungen bis zu 60 bezw. 120 km verwendet
                              									wird, je nachdem die Ansprüche höher oder niedriger gestellt sind. Für ein solches
                              									Kabel ist pro Kilometer
                           
                              
                                 der Selbstinduktionskoeffizient
                                 
                                    L = O
                                    
                                 
                              
                                 der Ohm'sche Widerstand
                                 R = 5,6 Ohm
                                 
                              
                                 die Kapazität
                                 C = 0,046 Mikrofarad
                                 
                              
                                 
                                    = 0,046 . 10–6 Farad.
                                 
                              
                           Es gibt dieses Kabel, wie das Experiment zeigte, ein Telephongespräch nicht mehr
                              									deutlich wieder, wenn die 
                              									Uebertragungsstrecke grösser als 100 km ist; soll nun gerechnet werden, welche
                              									Selbstinduktionen eingeschaltet werden müssen, damit der Schwächungskoeffizient =
                              									0,00645 pro Kilometer, d.h. 0,010 pro englische Meile wird, so liefert die
                              									Formel
                           \beta=\frac{R}{2}\,\sqrt{\frac{C}{L}} . . . . . 7)
                           das Resultat, dass L gleich 0,035
                              									Henry pro Kilometer gemacht werden muss, falls angenommen ist, dass die Einfügung
                              									der Selbstinduktionsspulen den Widerstand um 5,6 Ohm pro Kilometer vermehrt. Es
                              									würde dann die Amplitude nach 400 km noch
                           A = A0 . e–2,5 = etwa
                              									\frac{A_0}{12}
                           das würde noch 8 % der ursprünglichen Amplitude sein und wäre
                              									für die telephonische Wiedergabe mehr als genügend. Durch Erhöhung der
                              									Selbstinduktion könnte aber die Schwächung noch auf einen kleineren Betrag
                              									herabgemindert werden.
                           Ohne Einfügung der Selbstinduktionsspulen würde nach Formel 2)
                           
                              \beta=\sqrt{\frac{1}{2}\,p\,C\,R}=0,022,
                              
                           wenn die Schwingungszahl z = 600
                              									genommen wird. Es würde dann am Ende des 400 km langen Kabels die Amplitude noch A = A0 . e–8,8 sein, d.h. also auf den \frac{1}{6300} Teil
                              									reduziert erscheinen. Es würde also mit Selbstinduktion
                              									eine 500mal bessere Uebertragung erfolgen als ohne dieselbe. Die Wellenlänge würde sich bei
                              									eingeschalteten Selbstinduktionen zu angenähert
                           
                              \begin{array}{rcl} \lambda=\frac{2\,\pi}{p\,\sqrt{L\,C}}&=&\frac{2\,\pi}{2\,\pi\,\cdot\,600\,\sqrt{0,035\,\cdot\,0,046\,\cdot\,10^{-6}}}
                                 \\ &=&20\mbox{ km}\end{array}
                              
                           berechnen. Bringt man alle Kilometer eine
                              									Selbstinduktionsspule von 5,6 Ohm Widerstand und 0,035 Henry Selbstinduktion an, so
                              									würde ein ungleichförmiges Kabel entstehen, welches so genau mit einem
                              									gleichförmigen, von gleichem Gesamtwiderstand und gleicher Gesamtinduktion
                              									übereinstimmt wie
                           sin\,\frac{\pi}{20}=0,156 mit \frac{\pi}{20}=0,157,
                           d. i. mit einer Abweichung von weniger als 1 % und einem
                              									Unterschied, der experimentell überhaupt nicht mehr feststellbar wäre.
                           Die höchste in der Telephonie zu berücksichtigende Schwingungszahl ist
                              									erfahrungsgemäss 750 Schwingungen pro Sekunde, also ungefähr die benutzte
                              									Grösse.
                           4. Für ein transatlantisches Kabel müsste die
                              									Dämpfungskonstante noch kleiner sein, da hier die Entfernung grösser ist, etwa 3000
                              									km, und die Kapazität pro Kilometer eine etwa 4mal so grosse ist wie oben. Es
                              
                              									müssten also grosse Selbstinduktionen angewandt werden. Grosse Selbstinduktion und
                              									grosse Kapazität führen aber zu sehr kurzen Wellen, wie aus Gleichung 3) und 5)
                              									ersichtlich ist. Würde z.B. ein Kabel verwendet, welches eine 6mal so grosse
                              									Kapazität hat wie oben, so müsste eine 6mal so grosse Selbstinduktion angewandt
                              									werden, um dasselbe β zu erhalten; für eine
                              									Periodenzahl von 750 würde sich dabei eine Wellenlänge von nur 3,9 km ergeben. Es
                              									müssten also die Induktionsrollen in einem Abstande von nur \frac{3,9}{20}\mbox{ km}=180\mbox{ m}
                              									angebracht werden.
                           Für ein Telephonkabel, welches unterseeisch verlegt ist, dürfen die Induktionsrollen
                              									nicht zu grossen Raum einnehmen und müssen bei hoher Selbstinduktion einen geringen
                              									Widerstand besitzen; infolgedessen will Pupin für diese
                              									Zwecke die Induktionsrollen auf einen aus ringförmigen in PQ geschlitzten dünnen Stahlscheiben zusammengesetzten Kern aufwickeln.
                              									Wird z.B. ein Stahlkern (Fig. 2) von 10 cm Höhe aus
                              									Stahlscheiben von 0,02 cm Dicke, 2,5 cm innerem und 6,5 cm äusserem Durchmesser
                              									hergestellt, und werden auf denselben zwei Lagen eines Drahtes von etwa 2 mm
                              									Durchmesser, jede Lage zu 48 Windungen, angebracht, so beträgt der Widerstand
                              									einer solchen Spule etwa 0,0125 Ohm und die Selbstinduktion berechnet sich zu 0,042
                              									Henry, wenn als Permeabilität für die schwachen Ströme, die hier in Betracht kommen,
                              									180 angenommen wird. Nach der Ansicht Pupin's lassen
                              									sich solche Spulen gut im Kabel unterbringen; die Selbstinduktion derselben wäre
                              									z.B. ausreichend, wenn es sich um ein Kabel von 3000 km Länge handelt. Nach der
                              									gegenwärtigen Konstruktion ist die Kapazität eines solchen Unterseekabels etwa 0,2
                              									Mikrofarad pro Kilometer; der Widerstand sei 3,4 Ohm pro Kilometer. Verlangt man,
                              									dass
                           β = 0,002
                           wird, damit
                           3000 . β = 6
                           wird, so ist für den Kilometer eine Selbstinduktion von 0,2
                              									Henry notwendig, unter der Annahme, dass der Widerstand hierdurch nur um ⅔ Ohm pro
                              									Kilometer wachse.
                           
                              
                              Textabbildung Bd. 317, S. 71
                              Fig. 2.
                              
                           Wird eine Periodenzahl von 750 zu Grunde gelegt, so wird die
                              									Wellenlänge
                           \lambda=\frac{1}{750\,\sqrt{L\,C}}=\mbox{ etwa }3\mbox{ km.}.
                           
                              
                              Textabbildung Bd. 317, S. 71
                              Fig. 3.
                              
                           Wird nach der obigen Regel verfahren, dass etwa 15 Spulen pro Wellenlänge verwendet
                              									werden, so würden pro Kilometer 5 Spulen anzuwenden sein; Spulen von den
                              
                              									obengenannten Dimensionen würden also dazu völlig ausreichen.
                           
                              
                              Textabbildung Bd. 317, S. 71
                              Fig. 4.
                              
                           5. Um die Ergebnisse der Rechnung zu prüfen, hat sich Pupin ein künstliches Kabel von 250
                              
                              									englischen Meilen gleich 400 km Länge hergestellt; es war aus 250 Stücken
                              									zusammengesetzt;, die nach Fig. 3 konstruiert waren:
                              									auf paraffiniertes Papier wurden beiderseitig Streifen von Stanniol angebracht,
                              									welche nach Fig. 3 angeordnet waren. Der Widerstand
                              									eines solchen Blattes betrug ungefähr 9 Ohm, die Kapazität ungefähr 0,074
                              									Mikrofarad. 250 solche Segmente stellten somit ein Kabel von den obengenannten
                              									Eigenschaften dar; sie wurden zu je 50 in Kästen eingepackt und diese dann mit
                              									Paraffin ausgegossen. Dann 
                              									wurden sie und die Selbstinduktionsspulen a, b
                              									u.s.w. nach Fig. 4 hintereinander geschaltet. AA, BB, CC... stellen die einzelnen Blätter der Fig. 3 vor und zwar bedeuten die oberen Linien die
                              									eine Seite, die unteren Linien die andere Seite des Kabels; durch Einschalten von
                              									Stöpseln bei 1, 2, 3 u.s.w. konnten die
                              
                              									Selbstinduktionsspulen kurz geschlossen und das Kabel praktisch selbstinduktionsfrei
                              									gemacht werden. Die Selbstinduktionsspulen waren nach Fig.
                                 										5 gewickelt; jede Spule enthielt zwei Wickelungen, welche durch 0,4 mm
                              									dicke Pappe PP voneinander getrennt waren.
                           
                              
                              Textabbildung Bd. 317, S. 72
                              Fig. 5.
                              
                           Jede Wickelung enthielt 580 Windungen eines 0,81 mm starken
                              									Drahtes und besass 0,03 Henry Selbstinduktion. Die gegenseitige Induktion betrug
                              									0,028 Henry, so dass die Spulen, in die Leitung nach Fig.
                                 
                                 										4 eingeschaltet, eine effektive Induktion von 0,058 Henry bedeuteten. Die
                              									Spulen waren nach der Bewickelung bei einer Temperatur von 170° C. in Wachs
                              									ausgekocht worden, um die Feuchtigkeit auszutreiben und eine gute Isolation zu
                              
                              									gewährleisten. Den Strom lieferte ein Wechselstromgenerator mit 30 Polen, der 2400
                              									Umdrehungen in der Minute machte. Um durch ihn rein harmonische Schwingungen in die
                              									Kabelleitung bringen zu können, wurde durch den Maschinenstromkreis ABC (Fig. 6) ein
                              									sekundärer Kreis mit Selbstinduktion E und Kondensator
                              										F erregt und erst mittels Transformators GH Strom in die Kabelleitung gebracht. K stellt ein Multicellularvoltmeter vor, an welchem die
                              									Resonanz des Sekundärstromkreises erkannt werden konnte.
                           
                              
                              Textabbildung Bd. 317, S. 72
                              Fig. 6.
                              
                           Während des Versuches blieb K zur
                              									Kontrolle über die Aenderungen des Maschinenstromes eingeschaltet und unter
                              									Beobachtung. Um die Wellenlänge und die Abnahme der Amplitude längs des Kabels
                              									untersuchen zu können, war eine Spule E in Nebenschluss
                              									zu der betreffenden Induktionsspule z.B. a1 gelegt (Fig. 4);
                              										E wirkt dann durch Induktion auf Spule F, welche mit einem d'Arsonval-Galvanometer H und einer Townsend-Kontaktscheibe G verbunden war, die auf der Achse des Stromgenerators
                              
                              									sass, und deren Umfang in 30 kleine Segmente eingeteilt war; da die Scheibe nur eine
                              									halbe Periode lang Kontakt lieferte, so konnte aus der Umkehr des
                              									Galvanometerausschlages, der sich ergab, wenn man die einzelnen Induktionsspulen a, b, c... anschloss, die Wellenlänge ersehen werden,
                              
                              									zugleich auch aus der Grösse des Ausschlages die Abnahme der Stromamplitude mit der
                              
                              									Entfernung. Die berechnete und beobachtete Wellenlänge stimmte innerhalb 1 % überein
                              									und betrug bei einer Wechselzahl von 600, L = 0,058 pro
                              									Meile, C = 0,074 . 10–6 Farad 18,1 Meilen. Bei einer Wechselzahl von nur 230 pro Sekunde wuchs
                              									sie auf 48 Meilen. Auch die aus der Beobachtung abgeleiteten Werte von β stimmten mit den berechneten Werten so gut
                              									überein, dass die Versuche eine einwandfreie Bestätigung der Rechnung lieferten.
                           6. Um zu versuchen, welchen Einfluss eine ungünstige Verteilung der Selbstinduktion
                              
                              									infolge der Reflexi+n der Wellen an den Selbstinduktionsspulen haben würde, wurden
                              									auch Versuche angestellt, bei welchen 10 Induktionsspulen, zu einer Gruppe
                              									vereinigt, in dem 10fachen Abstande einer einzelnen Spule eingeschaltet wurden, so
                              									dass die totale Induktion im Kabel dieselbe blieb und nur die Verteilung geändert
                              									wurde. Fig. 7 und 8
                              									zeigen die Kurven, welche die Stromstärke an verschiedenen Punkten zu einer
                              									bestimmten Zeit geben, und zwar Fig. 7 die Kurve,
                              									welche für eine der Theorie entsprechende Verteilung der Spulen je eine auf eine
                              									Meile sich bei einer Wechselzahl von 260 pro Sekunde ergab, Fig. 8 die Kurve, welche eine Verteilung lieferte, bei welcher nach je 5
                              									Meilen eine Gruppe von Induktionsspulen eingeschaltet war. Diese innere Reflexion
                              									und daraus entstehende Verzerrungen der Stromkurven machten sich besonders stark
                              									bemerkbar, wenn das Kabel für telephonische Uebertragung benutzt wurde. Während bei
                              									einer richtigen Verteilung der Induktionsspulen über das ganze Kabel hin ohne
                              									Schwierigkeit eine telephonische Verständigung möglich war, versagte dieselbe
                              									bereits bei einer Kabellänge von nur 150 km vollständig, wenn die Verteilung zu
                              									starken Reflexionen Anlass gab.
                           
                              
                              Textabbildung Bd. 317, S. 72
                              Fig. 7.
                              
                           
                              
                              Textabbildung Bd. 317, S. 72
                              Fig. 8.
                              
                           Die Theorie und die Versuche Pupin's geben
                              									augenscheinlich die Hilfsmittel an, welche eine transatlantische telephonische
                              									Verständigung erhoffen lassen können, und wer die Pupin'schen sorgfältigen Versuche und Berechnungen genauer studiert, wird mit
                              									ihm die Ueberzeugung teilen, dass sein Kabel den Weg zur transatlantischen
                              									Telephonie öffnet. Die Schwierigkeit seiner Konstruktion wird jedenfalls überwunden
                              									werden, nachdem sich in Amerika eine grosse Gesellschaft zur Ausnutzung der Pupin'schen Erfindung bereits gebildet hat.
                           
                              (Fortsetzung folgt.)